110 research outputs found

    The involvement of Eph–Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements

    Get PDF
    AbstractIn Xenopus gastrulation, the involuting mesodermal and non-involuting ectodermal cells remain separated from each other, undergoing convergent extension. Here, we show that Eph–ephrin signaling is crucial for the tissue separation and convergence during gastrulation. The loss of EphA4 function results in aberrant gastrulation movements, which are due to selective inhibition of tissue constriction and separation. At the cellular levels, knockdown of EphA4 impairs polarization and migratory activity of gastrulating cells but not specification of their fates. Importantly, rescue experiments demonstrate that EphA4 controls tissue separation via RhoA GTPase in parallel to Fz7 and PAPC signaling. In addition, we show that EphA4 and its putative ligand, ephrin-A1 are expressed in a complementary manner in the involuting mesodermal and non-involuting ectodermal layers of early gastrulae, respectively. Depletion of ephrin-A1 also abrogates tissue separation behaviors. Therefore, these results suggest that Eph receptor and its ephrin ligand might mediate repulsive interaction for tissue separation and convergence during early Xenopus gastrulation movements

    Density functional theory based molecular dynamics study of solution composition effects on the solvation shell of metal ions

    Get PDF
    We present an ab initio molecular dynamics study of the alkali metal ions Li+, Na+, K+ and Cs+, and of the alkaline earth metal ions Mg2+ and Ca2+ in both pure water and electrolyte solutions containing the counterions Cl- and SO42-. Simulations were conducted using different density functional theory methods (PBE, BLYP and revPBE), with and without the inclusion of dispersion interactions (-D3). Analysis of the ion-water structure and interaction strength, water exchange between the first and second hydration shell, and hydrogen bond network and low-frequency reorientation dynamics around the metal ions have been used to characterise the influence of solution composition on the ionic solvation shell. Counterions affect the properties of the hydration shell not only when they are directly coordinated to the metal ion, but also when they are at the second coordination shell. Chloride ions reduce the sodium hydration shell and expand the calcium hydration shell by stabilizing under-coordinated hydrated Na(H2O)5+ complexes and over-coordinated Ca(H2O)72+. The same behaviour is observed in CaSO4(aq), where Ca2+ and SO42- form almost exclusively solvent-shared ion pairs. Water exchange between the first and second hydration shell around Ca2+ in CaSO4(aq) is drastically decelerated compared with the simulations of the hydrated metal ion (single Ca2+, no counterions). Velocity autocorrelation function analysis, used to probe the strength of the local ion-water interaction, shows a smoother decay of Mg2+ in MgCl2(aq), which is a clear indication of a looser inter-hexahedral vibration in the presence of chloride ions located in the second coordination shell of Mg2+. The hydrogen bond statistics and orientational dynamics in the ionic solvation shell show that the influence on the water-water network cannot only be ascribed to the specific cation-water interaction, but also to the subtle interplay between the level of hydration of the ions, and the interactions between ions, especially those of opposite charge. As many reactive processes involving solvated metal ions occur in environments that are far from pure water but rich in ions, this computational study shows how the solution composition can result in significant differences in behaviour and function of the ionic solvation shell

    Hydrogen-bond structure and low-frequency dynamics of electrolyte solutions: Hydration numbers from ab Initio water reorientation dynamics and dielectric relaxation spectroscopy

    Get PDF
    We present an atomistic simulation scheme for the determination of the hydration number (h) of aqueous electrolyte solutions based on the calculation of the water dipole reorientation dynamics. In this methodology, the time evolution of an aqueous electrolyte solution generated from ab initio molecular dynamics simulations is used to compute the reorientation time of different water subpopulations. The value of h is determined by considering whether the reorientation time of the water subpopulations is retarded with respect to bulk-like behavior. The application of this computational protocol to magnesium chloride (MgCl2 ) solutions at different concentrations (0.6-2.8 mol kg-1 ) gives h values in excellent agreement with experimental hydration numbers obtained using GHz-to-THz dielectric relaxation spectroscopy. This methodology is attractive because it is based on a well-defined criterion for the definition of hydration number and provides a link with the molecular-level processes responsible for affecting bulk solution behavior. Analysis of the ab initio molecular dynamics trajectories using radial distribution functions, hydrogen bonding statistics, vibrational density of states, water-water hydrogen bonding lifetimes, and water dipole reorientation reveals that MgCl2 has a considerable influence on the hydrogen bond network compared with bulk water. These effects have been assigned to the specific strong Mg-water interaction rather than the Cl-water interaction

    ULTRAFILTRATED FRACTION OF KOREAN RED GINSENG EXTRACT IMPROVES MEMORY IMPAIRMENT OF TG2576 MICE VIA INHIBITION OF SOLUBLE AÎ’ PRODUCTION AND ACETYLCHOLINESTERASE ACTIVITY

    Get PDF
    Objective: The goal of this study was to research for an effective fraction on memory improvement of Korean red ginseng.Methods: In this study, 80 % ethanol red ginseng extract (RE) was divided into inner fluid (REUI) and outer fluid (REUO) by the ultrafiltration and then REUO was further separated into four fractions namely, REUO-00, REUO-30, REUO-50 and REUO-70, respectively, by Diaion HP-20 column chromatography.Results: REUO has protected more significantly the H2O2-induced SHSY-5Y cell death than REUI. Interestingly, the hydrophobic parts of the REUO (REUO-EtOHs) such as REUO-30,-50 and-70 decreased more significantly the H2O2-induced cell death than its hydrophilic part (REUO-00) in a dose-dependent manner. Then, we focused on the activity of a candidate for cholinergic functions, because memory deficits of neurodegenerative diseases are closely associated with cholinergic dysfunctions. The REUO-EtOHs (1.25 mg/ml) inhibited the activity of the acetylcholinesterase and its half maximal inhibitory concentration (IC50) was about 2.358 mg/ml. Additionally, we investigated whether the intake of the REUO (50 mg/kg/d) during 12 w could improve memory impairment of 12-month old Tg2576 mice and decrease total soluble amyloid-β (Aβ) proteins in the mouse brain cortex. The REUO alleviated significantly the memory impairment and successfully reduced the levels of the soluble Aβ proteins in the mouse cortex.Conclusion: We finally suggest that the REUO, including majorly its hydrophobic part that may be considered as more effective for memory improvement, will be highly considered as valuable candidate for the memory-enhancing ingredients against cholinergic dysfunctions and cognitive impairments of neurodegenerative diseases including Alzheimer's disease.Keywords: Ginseng, Alzheimer's disease, Acetylcholinesterase, Ultrafiltration, MemoryÂ

    Evaluation of a competitive ELISA for antibody detection against avian influenza virus

    Get PDF
    Active serologic surveillance is necessary to control the spread of the avian influenza virus (AIV). In this study, we evaluated a commercially-available cELISA in terms of its ability to detect AIV antibodies in the sera of 3,358 animals from twelve species. cELISA detected antibodies against reference H1- through H15-subtype AIV strains without cross reactivity. Furthermore, the cELISA was able to detect antibodies produced following a challenge of the AIV H9N2 subtype in chickens, or following vaccination of the AIV H9 or H5 subtypes in chickens, ducks and geese. Next, we tested the sensitivity and specificity of the cELISA with sera from twelve different animal species, and compared these results with those obtained by the hemagglutination-inhibition (HI) test, the "gold standard" in AIV sera surveillance, a second commercially-available cELISA (IZS ELISA), or the agar gel precipitation (AGP) test. Compared with the HI test, the sensitivities and specificities of cELISA were 95% and 96% in chicken, 86% and 88% in duck, 97% and 100% in turkey, 100% and 87% in goose, and 91% and 97% in swine, respectively. The sensitivities and specificities of the cELISA in this study were higher than those of IZS ELISA for the duck, turkey, goose, and grey partridge sera samples. The results of AGP test against duck and turkey sera also showed significant correlation with the results of cELISA (R-value >0.9). In terms of flock sensitivity, the cELISA correlated better with the HI test than with commercially-available indirect ELISAs, with 100% flock sensitivity
    • …
    corecore